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Abstract—The introduction of 6G technology into the Internet
of Vehicles (IoV) promises to revolutionize connectivity with
ultra-high data rates and seamless network coverage. However,
this technological leap also brings significant challenges, partic-
ularly for the dynamic and diverse IoV landscape, which must
meet the rigorous reliability and security requirements of 6G
networks. Furthermore, integrating 6G will likely increase the
IoV’s susceptibility to a spectrum of emerging cyber threats.
Therefore, it is crucial for security mechanisms to dynamically
adapt and learn new attack patterns, keeping pace with the
rapid evolution and diversification of these threats - a capability
currently lacking in existing systems. This paper presents a
novel intrusion detection system leveraging the paradigm of
life-long (or continual) learning. Our methodology combines
class-incremental learning with federated learning, an approach
ideally suited to the distributed nature of the IoV. This strategy
effectively harnesses the collective intelligence of Connected and
Automated Vehicles (CAVs) and edge computing capabilities
to train the detection system. To the best of our knowledge,
this study is the first to synergize class-incremental learning
with federated learning specifically for cyber attack detection.
Through comprehensive experiments on a recent network traffic
dataset, our system has exhibited a robust adaptability in learning
new cyber attack patterns, while effectively retaining knowledge
of previously encountered ones. Additionally, it has proven to
maintain high accuracy and a low false positive rate.

Index Terms—6G, IoV, Security, intrusion detection, Continual
Learning, Life-long Learning, Federated Learning

I. INTRODUCTION

As we enter the 6G era, the landscape of digital communica-

tions and interactions is undergoing a profound transformation.

This evolution is particularly evident in the Internet of Vehicles

(IoV) ecosystem, where the convergence of 6G technology

with Connected and Automated Vehicles (CAVs) promises to

significantly enhance efficiency, convenience, and user experi-

ence. However, this technological advancement is not without

its risks. The adoption of 6G in the IoV potentially increases

the vulnerability of CAVs to a multitude of emerging cyber

threats, making security a major concern for this promising

technology [1].

In the complex landscape of cybersecurity, Intrusion Detec-

tion Systems (IDS) hold a critical role. The transition from

traditional signature-based IDS to anomaly-based systems,

capitalizing on advancements in artificial intelligence (AI),

represents a significant leap forward. This evolution has led

to the development of IDS that can detect a wide array of cy-

berattacks with remarkable precision [2], [3]. Predominantly,

these recent AI-driven IDS rely on deep learning techniques

[3], [4], however an inherent limitation of DL: the challenge of

incremental learning from continuously evolving data streams,

often described as catastrophic forgetting [5]. This challenge

is particularly relevant when the system must differentiate

between classes that are not observed concurrently. In essence,

the IDS must be capable of dynamically adapting to new types

of attacks or variations in data patterns that were absent in its

initial training dataset. This capability for dynamic learning

and adaptability is a critical component for IDS to remain

effective in the constantly changing landscape of cyber threats.

Continual Learning, also known as life-long learning, fo-

cuses on acquiring knowledge from a continuous stream of

data, aiming to expand this knowledge base without the need

for retraining from scratch [5]. This area of ML has grown due

to its practical benefits, such as improving medical diagnoses,

advancing autonomous driving, and accurately predicting fi-

nancial trends. Its growth highlights its potential to enhance AI

adaptability in diverse real-world situations [5]. However, few

studies [6], [7] have investigated the application of continual

learning for attack detection, the proposed solutions are not

fully suited to the distributed and dynamic nature of the IoV.

They rely on a centralized learning model that requires data

collection, which raises privacy concerns.

This study aims to propose an adaptive IDS capable of

learning new attack patterns while retaining those previously

learned. We introduce a detection system that combines class-

incremental learning (CIL) with federated learning (FL), en-

suring adaptability and suitability for the distributed and dy-

namic environment of the IoV. To enable evolving detection of

emerging cyber attacks, our approach integrates the Continual

Learning with Experience And Replay (CLEAR) [8] method

into our detection model. CLEAR effectively combines direct

learning from recent data, ensuring the system remains adapt-

able, with indirect learning from historical data, enhancing its

stability. We train this detection model using FL across local

datasets from participating CAVs. In this setup, Multi-access

edge computing (MEC) nodes play a pivotal role in coor-

dinating the training process by acting as parameter servers

for aggregating FL model updates. The effectiveness of the

proposed solution is evaluated using the 5G-NIDD [9] dataset,

which contains real-world 5G network traffic traces. To mimic

real-world conditions as closely as possible, we initially train

the model on a dataset containing a single type of attack mixed



with benign traffic. We then progressively introduce samples

of various attack types, each time incorporating a new type.

The results have demonstrably proven the IDS’s ability to learn

new patterns while maintaining high accuracy and a very low

False Positive Rate (FPR).

The remainder of this paper is organized as follows. Sec-

tion II describes related work. The design of our scheme is

presented in Section III. Section IV depicts the performance

evaluation results, and finally, Section V concludes the paper.

II. RELATED WORK

A recent study by Osorio et al. [1] provided a thorough

analysis of security and privacy in the 6G-enabled IoV. They

explored how key technological enablers such as network

softwarization, blockchain, and AI/ML enhance secure com-

munication. To address the challenges associated with de-

ploying machine learning in 6G-enabled IoV, Hoang et al.

[4] proposed a secure and reliable integration of Transfer

Learning into the 6G-enabled IoV framework. Addressing

security threats in 6G IoV networks, Sedjlmaci et al. [2]

developed a collaborative cybersecurity framework based on a

multi-level FL algorithm and Stackelberg security games. In a

similar vein, Zhang et al. [10] designed a sophisticated weight-

based ensemble ML algorithm, optimized with many-objective

techniques, for identifying anomalies in vehicular Controller

Area Network (CAN) bus systems, thereby aligning with the

high security demands of 6G networks. However, while these

studies propose IDS solutions suitable for 6G-enabled IoV,

they do not fully address the adaptability challenges in a

such dynamic and constantly evolving environments where

cyber threats are in continuous flux, with new ones emerging.

A notable limitation of DL-based IDS is their struggle with

incremental learning from continuously evolving data streams,

a problem often termed as catastrophic forgetting [5].

To tackle the challenge of adapting IDS to new attack

patterns and addressing catastrophic forgetting in DL-based

IDS, the study by Prasath et al. [7] examines the effectiveness

of continual learning models for the incremental learning of

novel attack patterns. This research involved both experimental

and analytical studies, focusing on three key continual learn-

ing methods: learning without forgetting, experience replay,

and dark experience replay. Additionally, another significant

effort in employing continual learning is the work by Ejaz

et al. [6], which investigates the use of continual learning

techniques for consistent phishing detection over time. This

study trained a vanilla neural network (VNN) model with deep

feature embedding of HTML content in a continual learning

setup. The results indicate that continual learning algorithms

effectively maintain accuracy over time, albeit with slight

performance decline. However, these solutions predominantly

utilize centralized learning models, which may not align with

the specific demands of the IoV environment. These models

often require high bandwidth and result in increased latency.

Moreover, there are privacy concerns, as sensitive data might

be compromised during transmission to central locations.

To align with the specific demands of the IoV environment,

recent studies [11], [12] have proposed Federated Learning

(FL)-based IDS for misbehavior detection in 5G and 6G-

enabled IoV. Our solution uniquely combines FL and Contin-

ual Learning (CL) to ensure both adaptability and suitability

within the distributed and dynamic environment of the IoV.

III. PROPOSED SOLUTION

The proposed IDS is designed to operate on CAV, where it

monitors network traffic. For each network flow, the system

calculates a specific set of features. These primarily include

attributes and statistics from packet headers, focusing on infor-

mation from the network and transport layers. The aggregation

of these feature vectors constitutes the local dataset, which is

crucial for training the detection model during the development

phase. In the deployment phase, the IDS classifies each vector

as either benign or as a specific type of attack.

To enable evolving attack detection, we use the Continual

Learning with Experience And Replay (CLEAR) [8] method

for our detection model. This methods fuses direct learning

from new experiences to preserve the system’s adaptability

with indirect learning from past experiences to bolster stability.

Moreover, CLEAR strengthens the system’s consistency by

incorporating behavioral cloning, aligning the current opera-

tional guidelines with prior iterations. CLEAR is underpinned

by an actor-critic training regime that leverages both fresh

and historical experiences. Formally, the network parameters

are denoted by θ, with πθ indicating the network’s current

policy over actions a, and hs representing the hidden state

of the network at time s. The policy generating the observed

experience is represented by µ. The V -Trace target vs for this

method is defined as follows [8]:

vs := V (hs) +

s+n−1
∑

t=s

γt−s

(

t−1
∏

i=s

ci

)

δVt,

where δVt := ρt(rt + γV (ht+1) − V (ht)) for truncated

importance sampling weights ci := min
(

c,
πθ(ai|hi)
µ(ai|hi)

)

, and

ρt := min
(

ρ,
πθ(at|ht)
µ(at|ht)

)

(with c and ρ constants). The policy

gradient loss is:

Lpolicy-gradient := −ρs log πθ(as|hs)(rs + γvs+1 − V (hs)).

The loss functions Lpolicy-gradient, Lvalue, and Lentropy are

utilized for both new and replay experiences. Additionally,

Lpolicy-cloning and Lvalue-cloning are incorporated exclusively for

replay experiences.

In replay experiences, additional loss terms are incorporated

to enable behavioral cloning between the network’s current

state and its historical counterparts. This is aimed at preventing

deviations in the network’s output on replayed tasks during the

learning of new tasks. The methodology includes penalizing

(1) the Kullback-Leibler (KL) divergence, which assesses the

disparity between the historical and present policy distribu-

tions, and (2) the L2 norm, reflecting the variance between



historical and current value functions. Technically, this leads

to the integration of specific loss functions [8]:

Lpolicy-cloning :=
∑

a

µ(a|hs) log
µ(a|hs)

πθ(a|hs)
,

Lvalue-cloning := ∥V (θhs
)− Vreplay(hs)∥

2.

Algorithm 1: Federated Averaging Algorithm

1 Variables: K: index of clients, B: local batch size, E:

number of local epochs, η : learning rate

2 Initialize w0

3 for each round t ∈ {1, ..., N} do

4 m← max(C. K, 1)

5 St ← (random set of m CAVs)

6 for each CAV k ∈ St in parallel do

7 βk ← (split Pk into batch of size B )

8 for each local epoch i ∈ {1, ..., E} do

9 for batch b ∈ βk do

10 wk ← wk − η∇l(wk; b)
11 end for

12 end for

13 wk
t+1 ← wk

14 end for

15 wt+1 ←
∑n

k=1
nk

n
wk

t+1

16 end for

The MEC nodes orchestrate the federated training process of

the detection model by playing the role of parameters servers

for model updates aggregation.First, the MEC server initializes

the learning parameters of the detection model, including the

number of layers, number of neurons, activation functions,

and learning rate. These parameters are then shared with the

participating CAVs. Each CAV trains the detection model on

its local dataset using these parameters. Upon completion, each

CAV sends its local model’s parameters (weights) back to the

MEC server. The MEC server aggregates these received local

models using the Federated Averaging (FedAvg) algorithm

[13] to generate a global learning model. This aggregated

global model is then distributed back to the CAVs to initiate

a new training round. The main steps performed by both the

MEC server and each participating CAV, as well as the iterative

training and aggregation process, are illustrated in Algorithm

1.

In our study, the federated learning problem involving

multiple CAVs is formulated as a federated optimization

problem. This problem is solved using the FedAvg algorithm,

where each CAV calculates the average gradient of the model

weights w for the current training round r using its local data.

Subsequently, each CAV performs a local gradient descent on

the model using its own data. Meanwhile, the MEC server

aggregates these local updates to update the global model,

which is then sent back to the CAVs for further training. This

iterative process continues for a predefined number of rounds,

initially set by the MEC server.

IV. PERFORMANCE EVALUATION

A. Dataset

We evaluated our system using the 5G Network-Intrusion

Detection and Defense (5G-NIDD) [9] dataset. This dataset

was selected for its recency, the variety of attack types it

includes, and particularly because it contains real 5G traffic.

Ideally, we would have preferred to use a dataset with 6G

traffic, but to our knowledge, such a dataset is not yet available.

The dataset includes examples of Denial of Service (DoS)

attacks, such as ICMP Flood, UDP Flood, SYN Flood, HTTP

Flood, and Slowrate DoS, as well as port scans, including

SYN Scan, TCP Connect Scan, and UDP Scan. Following

a comprehensive data preprocessing that involved cleaning,

normalization, and feature engineering, the final dataset was

refined to include 522,550 samples, each characterized by 81

features.

B. Experimental results

Initially, we assess the performance of the proposed detec-

tion model within a centralized training setup. Subsequently,

we proceed to evaluate its accuracy in a federated training

setup. To ensure a validation as realistic and closely aligned

with real-world scenarios as possible, we begin by training the

model on a dataset that includes only one type of attack along

with benign traffic. Subsequently, we sequentially introduce

samples of different attack types, each time integrating a new

type. The order of the attacks’ introduction is completely

random. The model evaluation was based on the three metrics

detailed below:

• Accuracy: TP+TN
TP+FN+FP+TN

• Recall: TP
TP+FN

• FPR (False Positive Rate): FP
FP+TN

• F1-Score: F1 Score = 2×TP
2×TP+FP+FN

TP, TN, FP, and FN denote true positive, true negative, false

positive, and false negative, respectively.

1) Centralized training: We implemented and evaluated our

proposed system within the Google Colab cloud environment,

utilizing the Pytorch package to implement both local and fed-

erated learning models. The core of our system is a Multilayer

Perceptron (MLP) model, intricately structured with three

hidden layers. Each layer comprises 300 neurons, activated

by the ReLU (Rectified Linear Unit) function. Throughout its

training phase, it undergoes 1000 iterations. Additionally, we

incorporated a buffer memory capable of storing up to 100

samples. This memory plays a crucial role in our implementa-

tion of CLEAR method. By preserving previously observed

samples, it significantly mitigates the issue of catastrophic

forgetting.

Figure 1 illustrates the performance dynamics as new types

of attacks were incrementally introduced to the system. Ini-

tially, the system’s handling of benign traffic and Lowrate DoS

attack was exemplary, achieving 100% accuracy, a 0% FPR,

and a detection rate of over 99%. Despite a slight decline in

performance following the addition of UDP Flood and HTTP

Flood attacks, the model successfully maintained high levels
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Fig. 1: Evaluation of Performance Throughout the Incremental Learning Process
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Fig. 2: Accuracy vs. Nb. clients & Nb. Iterations

of performance. Upon the final integration of all attack types,

the detection model sustained robust performance, with both

accuracy and recall exceeding 92%, while maintaining a very

low FPR of 2%.

2) Federated training: In our federated training approach,

we implemented an independent and identically distributed

(IID) sampling setup. We followed the same testing strategy

as our previous experiment, which involves both sequential

and random observations of various attack types. In our initial

setup, we considered 10 clients and conducted training over

10 rounds. We experimented with varying numbers of local

iterations to assess the model’s convergence. As shown in

Figure 2a, it is evident that the model converges after 300

local iterations (across 10 FL rounds). This observation is

corroborated by the swift learning rate and consistently high

accuracy depicted in the plot.

For a comprehensive evaluation, we assessed the system

in both binary classification (benign, malicious) and multi-

class classification scenarios. In the multi-class context, we

considered both Macro Recall and Weighted Recall. Macro

Recall measures the average performance across all classes,

treating each class equally. Weighted Recall, on the other

hand, accounts for the frequency of each class, providing

a more realistic evaluation in scenarios where some attacks

are more prevalent than others. These metrics offer a well-

rounded assessment, considering both majority and minority

attacks, providing a comprehensive perspective on the model’s

capabilities and opportunities for improvement. As illustrated

in Table I, the detection model shows very good performances

with a high weighted recall of 0.931, showcasing its strong



It. locales Multiclass Acc. Macro Recall Weighted Recall Binary Acc. Binary FPR Binary Precision Binary Recall Binary F1-Score

100 0.839 0.642 0.839 0.960 0.025 0.969 0.941 0.955
200 0.919 0.854 0.919 0.980 0.014 0.983 0.973 0.978
300 0.931 0.874 0.931 0.985 0.020 0.976 0.991 0.984
400 0.926 0.875 0.926 0.980 0.031 0.964 0.993 0.978
500 0.921 0.874 0.921 0.975 0.040 0.954 0.993 0.973

TABLE I: Nb. of Local Iterations vs. Predictive performances

No. of Clients Multiclass Acc. Macro Recall Weighted Recall Binary Acc. Binary FPR Binary Precision Binary Recall Binary F1-Score

20 0.928 0.874 0.928 0.984 0.024 0.972 0.993 0.982
40 0.933 0.874 0.933 0.987 0.016 0.980 0.991 0.986
60 0.923 0.870 0.923 0.979 0.033 0.961 0.993 0.977
80 0.927 0.872 0.927 0.984 0.024 0.972 0.993 0.982

TABLE II: Nb. of Clients vs. Predictive performances

performance in identifying majority classes. While the macro

recall is at 0.874, this still represents a commendable perfor-

mance, especially in the context of less frequent classes.

To assess the system’s scalability, we experimented with

varying the numbers of FL CAVs. Figure 2b indicates strong

scalability in the federated learning process. Despite increasing

the number of clients per MEC node, from 20 to 80, there is no

significant variance in accuracy, suggesting that the system can

handle scaling horizontally—adding more clients—without

a loss in performance. The quick convergence and stable

high accuracy across all client configurations demonstrate the

system’s robustness and effectiveness in a distributed learning

context. Table II demonstrates that the detection model main-

tains stable and high performance in both multiclass and binary

classifications across varying numbers of clients. The model

achieves high accuracy and precision, indicating its robustness.

While the macro recall indicates a slightly lower performance

in identifying less frequent attack types, the high F1-scores

across all client groups suggest a well-balanced model. The

consistent performance, regardless of the number of clients,

affirms the model’s scalability and effectiveness.

V. CONCLUSION

This study introduced a new adaptive Intrusion Detection

System (IDS) designed for the constantly evolving Internet of

Vehicles (IoV) security environment, in anticipation of the up-

coming 6G technology shift. By integrating class-incremental

and federated learning, which are well-suited to the IoV’s

distributed structure, the system achieved a detection rate

exceeding 92%, while maintaining a very low false positive

rate of 2%, as demonstrated in our tests using a recent dataset

generated from a real test network. These results underscore

the system’s flexibility and represent a significant advancement

in AI-driven cybersecurity for vehicular networks. Our efforts

provide a foundational step towards enhancing IoV security in

preparation for the new wave of cyber threats expected with

6G advancements.
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